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Logistic Regression

Abstract

A search of the literature reveals that important statistical algorithms and
indices pertaining to logistic regression are being underused. In layperson’s
terms, the writer (a) describes logistic regression in comparison with
discriminant analysis and linear regression and (b) suggests that some
techniques only accessible via computer syntax should also be consulted in
evaluating logistic regression models. A heuristic dataset is employed
throughout to make the discussion concrete. SAS and SPSS syntax files are
provided for all analyses described.
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Logistic Regression: Going Beyond Point-and-Click

Regression procedures are useful for understanding and explaining
complex relationships among variables and for making predictions to a
criterion. Linear regression models are regularly adopted for this purpose.
While linear models are appropriate when both criterion (dependent) and
predictor (independent) variables are continuously scaled, these should not be
used when the criterion is categorically scaled. One reason for the avoidance
is that predicted probabilities will often fall outside the permissible range.
Further, the relationship between predictor and criterion will be
underestimated if the underlying function is nonlinear.

An alternative to linear regression is discriminant analysis (DA). While
DA is frequently the analysis of choice in the presence of a categorically-
scaled criterion variable, it requires the strong assumptions of multivariate
normality of the predictors and equality of covariance matrices (Klecka,
1980) . When the assumptions are met, discriminant analysis may be a wviable
method (Rice, 1994), but this is not often the case. Further, DA cannot be
(validly) applied with categorical predictor variables because multivariate
normality cannot hold with non-continuous data.

In his book on regression methods Darlington writes, “[discriminant
analysis] is in the process of being replaced in most modern practice by
logistic regression” (1990, p. 458). Psychometricians regularly adopt logistic
regression in estimating item response theory parameters (Hambleton &
Swaminathan, 1985) and to assess differential item functioning (French &
Miller, 1996; Swaminathan & Rogers, 1990). Logistic regression has proven to
be especially useful in epidemiology (Lemeshow & Hosmer, 1982), family studies
(DeMaris, 1995; Morgan & Teachman, 1988), and in other more specialized areas
where criterion variables are often dichotomous (e.g., see Schiel & King
[1999]) for a recent example of its application in making course placement
decisions). In addition, researchers from various fields have recently
published “tutorials” encouraging greater use of logistic regression (e.g.,
clinical psychology: Davis & Offord, 1997; counseling psychology: Cizek &
Fitzgerald, 1999; health care: Peng, Manz & Keck, 2001; interpersonal
violence: McNutt, Holcomb & Carlson, 2000; social work: Morrow-Howell &
Proctor, 1992; and sociology: Lottes, Adler & DeMaris, 1996).

There are several reasons for the increased popularity of the
statistical technique in these disciplines. Most notably, logistic regression
is a more general technique than other methodological choices. The related
procedure of loglinear analysis can accept a qualitative criterion but not
continuous predictors. Discriminant analysis allows a qualitative criterion
but not categorical predictors. Logistic regression, on the other hand, allows
a qualitative criterion and predictors that are continuous, categorical or a
mixture of both.

Second, logistic regression fits a nonlinear function to the data. The
relationship between predictors and a dichotomous criterion' is nonlinear and
will not be adequately modeled by linear regression. When the canonical
discriminant functions are used for prediction, discriminant analysis also
supposes a linear relationship between criterion and predictors. Logistic
regression models a curvilinear function to the data, which potentially will
explain more criterion variance.

Third, the restrictive assumptions of linear regression and discriminant
analysis are relaxed in logistic regression. In addition, linear regression
will not necessarily yield predicted scores between 0 and 1, but logistic
regression always computes permissible probabilities.

Purpose

This paper explains the statistical method of logistic regression by
drawing analogies, when possible, to concepts and calculations associated with
the more familiar linear regression and discriminant analysis methods.
Logistic regression concepts are also linked directly to the interpretation of
results from a sample dataset. Computer application is made to both SAS and
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SPSS. When important procedures are not readily available in the commercial
packages, syntax files are appended to facilitate greater use of these
techniques.

Why Not Use Linear Regression?

Calculating the Estimates

A brief review of the workings of linear regression will aid in
understanding the dynamics underlying discriminant analysis and logistic
regression. In linear regression one derives an equation composed of predictor
variables that maximally explains the variation of scores on the dependent
variable. When several predictors are included, the equation is composed of
multiplicative constants (b weights) applied to scores on the independent
variables, along with a single additive constant (a weight). When an error
term (e) is included, the equation perfectly defines each individual’s
criterion score:

Y=a+hXi+bXo+...+DbXk +e , (1)

where k = the number of predictor variables. If the error term is excluded,
scores resulting from the equation produce a synthetic variable composed of

predicted criterion scores, denoted Y:
S_?=§+1_)1§1+1_)z§z+...+kak . (2)

More will be said about predicted scores later.

Unstandardized regression weights are derived such that the sum of the
squared deviations of the criterion scores (¥Y) from the predicted (g) scores
are minimized. This is equivalent to saying that the (squared) errors are
minimized, hence the mathematical method of obtaining such a solution is
denoted as ordinary least squares (OLS) estimation. No other solution will
produce smaller (squared) errors if the assumptions of linear regression are
met.

The a weight (additive constant, intercept) is interpreted as the
criterion score when the values of the predictor variables are at 0. The b
weight (multiplicative constant, slope) indicates the change in the mean of
the probability distribution of Y per unit increase in X. In other words, if
the predictor variable is increased by 1 point and all other predictors are
held constant, how many raw score units will the criterion variable increase?

When all scores are standardized (i.e., transformed to have variance of

1 and mean of 0), the a weight disappears (becomes 0) and the b weights are
denoted as P weights or standardized regression coefficients. They are

interpreted: If a standardized predictor variable is increased by 1 unit while
holding all other predictors constant, how many standardized units will the
criterion variable increase? Larger P weights indicate stronger predictors in
the equation. However, because multicollinearity may exist among predictors,
one should also always interpret structure coefficients (or bivariate
correlations) when determining variable importance (Thompson & Borrello,
1985).

Assumptions

Linear regression assumes that (a) each X variable is measured without
error, (b) the relation between Y and each X is linear (in the parameters),
(c) the mean of errors is 0, (d) errors are uncorrelated (independence of
observations), (e) error variance is constant across levels of each X
(homoscedasticity), (f) errors are uncorrelated with each X, (g) errors are
normally distributed, (h) Y is a random variable, and (i) no important
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variables are excluded from the equation, thus implying a correctly specified
model. Assumption (b) can be relaxed by transforming (raising to powers, etc.)
the predictors or criterion variables, but the parameters themselves (i.e.,
the a and b weights) cannot be so transformed. In this sense, the equation is
linear with respect to the parameters, but not necessarily with respect to the
variables. This distinction will be important when considering logistic
regression. Assumption (h) suggests that Y has a range of possible values,
each having an associated probability. If the criterion is categorical, then
assumptions (b), (e), (g), and (h) will also necessarily fail. Thus, linear
regression should not be used with a categorical criterion variable or
categorical predictor variables (unless dummy or effect coding is applied).

To see these dynamics, consider the sample data presented in Table 1.
These are taken from the cars dataset included in several recent versions of
the SPSS statistical package. You may wish to replicate the following analyses
if you have access to SPSS. Cases with any missing values were first deleted,
next, the year and cylinder categorical variables were deleted, and finally,
country of origin was recoded to a dichotomy: 0 = European/Japanese country of
origin, 1 = American origin. This resulted in a total of N = 391 usable cases
measured on six interval/ratio-scaled variables.

Using linear regression, the country of origin in which each car was
manufactured was regressed on miles per gallon (mpg), engine size, horsepower,
vehicle weight, and time to accelerate. Figure 1 depicts a scatterplot of one
of the predictors (mpg) with the criterion. Note that the scores are not
clustered around a diagonal line, as one would see if the relationship between
the variables was linear. Assumption (b) will not be met because of the
dichotomous dependent variable.

A Multiple R? of .495 was obtained from the linear regression (see Table
2). Statistical significance tests computed for each predictor’s b weight
indicate that mpg, engine, and horsepower are the most important predictors in
the equation, though structure coefficients point to weight as a good
predictor of origin as well.? Figures 2 and 3 demonstrate how the qualitative
dependent variable caused failure to meet the error distributional
assumptions. The errors are not normally distributed (Figure 2; plotted points
are expected to randomly cluster around the diagonal line) nor identical in
variance across values of the predictor variable (Figure 3 depicts mpg; a
random pattern of plotted points is expected). Clearly, linear regression
should not be used with this model.

Even if one argues that the failure to meet those assumptions does not
invalidate results, consider the predicted scores obtained using Equation 2.

For this analysis, the i scores ranged from .06 to 1.42 (not presented here).

With a dichotomous criterion variable, the i scores are equivalent to

predicted probabilities of group membership equal to 1, in this case, a car
being manufactured in America. However, a probability cannot fall outside the
0 to 1 range. What does it mean to say that for certain combinations of scores
on predictor variables, the probability of being manufactured in America is
1.42? One might argue that such a car is predicted with certainty to be in
group 1. However, predicted scores closer to the typical cutting point of .5
can be invalid as well, in which case group prediction will be incorrect. This
illustrates a second problem with using linear regression, namely, for some
vectors (combinations) of independent variable scores, predicted criterion
scores (probabilities) will be invalid.

Why Not Use Discriminant Analysis?

Calculating the Estimates

Discriminant analysis (DA) holds more promise when analyzing categorical
variables (for a full treatment, see Klecka, 1980; Stevens, 1996). DA can also
be used for either description or prediction. This analysis requires a
qualitative criterion (grouping variable) along with continuously-scaled
predictors. In DA one or more cancnical discriminant functions are created by

6



Q

ERIC

Aruitoxt provided by Eic:

Logistic Regression 6

linearly combining the discriminating (predictor) variables to maximally
discriminate between values on the dependent variable (i.e., groups). Although
the criterion variable is assumed to be categorical in this analytic approach,
the technique is similar to linear regression. Both linear regression and DA
use OLS estimation in deriving the equation/function (equations for DA will
not be presented). Consequently, additive and multiplicative weights are
created which are analogous to a and b weights in regression. In this context,
b weights are referred to as unstandardized canonical discriminant function
coefficients. As in linear regression, both structure coefficients and
predicted scores can also be obtained.

The two statistical procedures differ in that DA allows for estimation
of multiple functions (equations) to better separate scores on the criterion
variable. The number of canonical discriminant functions that can be estimated
is equal to k - 1, where k = the number of predictor (discriminating)
variables.?® Each function can then be evaluated for statistical and
substantive significance. For our sample data containing only two groups,
namely European/Japanese versus American country of origin, only one function
(equation) can be estimated.

Table 3 presents DA results using the cars data to estimate the model
described earlier. Again, mpg, engine and horsepower are the strongest
discriminators in the equation as evidenced by their relatively large
standardized canonical discriminant function coefficients. Because DA is a

multivariate procedure, a multivariate measure of effect size, Wilks’ j, is
applied. Subtracting ) from 1 yields a Multiple R? measure of effect size,

here 1 - .505 = .495. Note that this value is identical to that obtained
through linear regression indicating that DA does not model the non-linear
relationship any better.® Recall also that the linear regression analysis
yielded unacceptable probabilities for the sample data. Predicted
probabilities realized through discriminant analysis ranged from .01 to .99;

all within the permissible range, as will always be the case with DA.

Assumptions

Discriminant analysis requires strict assumptions. Klecka (1980) lists
three: (a) no variable may be a linear combination of other variables, (b)
each group must be drawn from a population that is multivariate normal, and
(c) population covariance matrices must be equal for each group. Stevens
(1996) adds and emphasizes the importance of meeting the assumption of (d)
independence of observations. Though not always explicitly stated in
statistics books, as in linear regression DA assumes that (e) each X is
measured without error, (f) the mean of errors is 0, (g) errors are
uncorrelated with each X, and (h) no important variables are excluded from the
equation.

Regarding assumption (a), engine and weight are correlated at .934. This
value indicates likely multicollinearity. Assumption (b) should be assessed by
first evaluating bivariate normality (e.g., via scatterplots) and then
multivariate normality (see Thompson, 1990, for suggested methods). But with a
qualitative predictor, the assumption cannot hold because a qualitative
variable is not normally distributed and will not yield bivariate normal
distributions. For the cars data with no categorical predictors, the
assumption may be tenable (based on analyses not presented here). Box’s test
of equality of covariance matrices can be used to evaluate assumption (c). For
these data the assumption fails, F(15,382531) = 32.524, p < .001. Therefore,
DA will likely produce invalid results.

Logistic Regression

Calculating the Estimates

Unaltered criterion, transformed predictors. Because of the nonlinear
function obtained when predicting to a dichotomous dependent variable, the
logistic function (and its associated equation) differs dramatically from

7
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linear regression. Figure 4 depicts a typical function derived in a single
predictor model.

The multiple predictor linear regression equation (Equation 1) differs
significantly from the equation used in logistic regression:

y = expla + biXa + b2X2 + ... + bkXk) +e (3)
1+ expla+ biXa + baXo + ...+ bxkXk)

Instead of linearly relating the predictor scores to the criterion, an
exponential function of the predictors is modeled. The equation is no longer
“linear with respect to the parameters,” as was the case in linear regression.
Because of the curvilinear function, the slope is interpreted differently as
well. In linear regression the amount Y is increased remains constant across
the function, while in logistic regression for a unit increase in X, the
amount that Y increases will vary depending on where the X value falls along
the function. Consider again Figure 4: X values in the tails are associated
with smaller increases in Y.

Regarding predicted scores, T instead of 2 represents the logistic

regression expected conditional mean (predicted score, predicted probability)
of the dependent variable given a certain combination of scores on the
predictor variables. The equation is defined as

$=f = expla + biXa + b2X2 + ... + bkXk) (2)
- 1+ expla + biX1 + b2X2 + ... + bxXk)

Recall that with a dichotomous criterion variable, 2 scores in linear
regression and DA are simply the probability of group membership being equal

to 1. f scores in logistic regression are interpreted identically.

Logistic regression is often performed using a maximum likelihood
algorithm to estimate the parameters rather than OLS (for details, see Neter,
Kutner, Nachtsheim, & Wasserman, 1996, p. 573ff), though other options are
available. This procedure is iterative so that various values for the a and b
parameters are tested until a best-fitting solution is found (i.e., one that
maximizes the log-likelihood function). Pedhazur explains, “In logistic
regression the aim is to estimate parameters most likely to have given rise to
the sample data. Hence, the name maximum likelihood...” (1997, p. 718). A
disadvantage of such iterative procedures, and hence of logistic regression in
general, is the possibility that the solution will not converge on a best
estimate.

Transformed criterion, unaltered predictors. In Equations 3 and 4 the
predictor variables are raised to an exponent. The logistic function can
alternatively be defined such that instead of exponentiating the predictors
while leaving the criterion unaltered, the criterion is transformed while
leaving the predictors unaltered. But the criterion must first be expressed in
terms of odds, not probabilities. The odds of an event occurring is® defined

as the probability that the event will occur (g} divided by the probability

that it will not occur (1 - g). The observed probability of a criterion
response of 1 for a given vector (combination/set) of independent variable
scores can be determined by aggregating all the cases having that particular
vector of predictor scores and then simply calculating the percentage of
criterion responses equal to 1. The odds is then obtained by dividing the
percentage of responses equal to 1 (i.e., x) by the percentage of responses
not equal to 1 (i.e., 1 - x).

0dds and probability are easily confused, so an example is needed.$
Using our sample data, suppose we predict origin using only mpg. To determine
the observed probability of a criterion response of 1 occurring for cars with
an mpg score of, say 24, simply count the number of origin scores equal to 1
for every car having that mpg value: 6 of 18 for these data. Thus, based on

'8
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our data, the observed probability that a car averaging 24 miles per gallon

has been made in America is 6 / 18 = .33. The probability is 1 - .33 = .67
that the car was not made in America (and thus made in Europe or Japan).
Next, the odds is .33 / (1 - .33) = .5 that such a car was produced in

the U.S. 0dds less than 1.0 indicate that the event is less likely to occur
than the absence of the event, and vice-versa. The odds of .5 in this case is
interpreted: for any car having an mpg of 24, the car’s origin is half as
likely to be American as European/Japanese. If the odds was found to be 2.0,
the interpretation would be: cars with an mpg score of 24 are twice as likely
to have been made in America.

After transforming the data into odds, the natural logarithm must be
taken. Just as subtraction negates addition, the natural logarithm ("ln" or
"log.," on a calculator) negates an exponent (“e,” “exp,” or “inv+ln” on a
calculator). So, a natural logarithm transformation is applied to the
criterion scores in Equation 4 to negate the exponential predictor variables.
This results in a “log-odds” or a “logit” for each case in the sample.

The right-hand side of Equation 4 can now be expressed in linear terms:

7
1n1 — = a + biX1 + b2X2 + ... + bxXk . (5)
-7

This equation is linear with respect to the logits and is denoted the fitted
logit response function (Neter et al., 1996). Logistic regression is often
referred to as “logit” modeling due to the transformation of the dependent
variable into linear log-odds/logits. These equivalent formulas (Equations 4
and 5) are presented merely to facilitate ease of interpretation. Menard
(1995) emphasizes,
It is important to understand that the probability...and the logit are
[two] different ways of expressing exactly the same thing [the
curvilinear relationship between criterion and predictors]. Of the [two]
measures, the probability [transformed predictor variables]...is
probably the most easily understood. Mathematically, however, the logit
form of the probability [transformed criterion] is the one that best
helps us to analyze dichotomous dependent variables [primarily in terms
of interpreting variable importance]. (p. 13)

Assumptions

Unlike linear regression, logistic regression does not assume
homoscedasticity or normality of errors. Unlike discriminant analysis, the
assumptions of equality of covariance matrices and multivariate normality are
not required. However, meeting these two assumptions will usually produce more
stable parameter estimates. As in linear regression and DA, logistic
regression assumes that (a) each X is measured without error, (b) the mean of
errors is 0, (c) errors are uncorrelated [independence of observations], (d)
errors are uncorrelated with each X, and (e) no important variables are
excluded from the equation. Also, the relationship between logits and
predictors should be linear and additive (Fuller, 1998), though this
requirement can be relaxed through transformation (see Neter et al., 1996, for
a fuller discussion).

Computer Software Used to Obtain Logistic Estimates

Most of the popular statistical software packages now include logistic
regression algorithms. Prior to the release of Version 6.06, SAS users were
required to use PROC CATMOD, a general procedure for modeling categorical
data, to obtain logistic results. The newer versions include a procedure
dedicated to logistic regression. Appendix A presents examples of SAS and SPSS
syntax statements for conducting a logistic regression, although Windows
versions of both applications allow users to “point-and-click” to obtain some
analyses.

Keep in mind that statistical packages may differ as to the default

3
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criterion score predicted. For the cars data, SAS (Version 8.0) predicted a
criterion response of 0 (i.e., the absence of the event), while SPSS (Version
10.1) predicted a response of 1. This will occasion some estimates to diverge,
most notably odds ratios (see discussion below), unless criterion scores are
re-coded before running the analysis.

Table 4 depicts results from a logistic regression. SAS was used to
estimate the parameters. SPSS estimates would be identical but with reversed
signs due to predicting origin = 1 instead of 0.

Assessing Overall Model Fit

There are several ways to assess overall model fit in logistic
regression. While various statistical significance tests may be consulted, it
is preferable to always interpret significance tests in light of effect size
measures (on the significance testing controversy, see Carver, 1993; Thompson,
1999; Wilkinson & The APA Task Force on Statistical Inference, 1999). Several
tests of statistical significance and measures of effect size will be
described and interpreted in the context of our sample data.

Statistical significance tests. Significance tests in logistic
regression predominantly employ chi-square distributions to obtain probability
values. One common index, denoted “-2LL,” is computed by first multiplying the
log likelihood (LL) obtained from a model containing all predictors by -2,
thus producing a statistic which is chi-square distributed. A second chi-
square distributed statistic is computed for an intercept-only null model. The
difference between the chi-square values is itself chi-square distributed and
can be tested for statistical significance. This procedure is analogous to an
overall F-test in linear regression, which evaluates the hypothesis that all

predictors are related to the dependent variable (i.e., b, = b, = ... = b =

0). A small p value indicates that at least one predictor is related to the
criterion, hence statistical significance is desired in this case.

In SPSS the null and full model -2LL values are not listed unless the
iteration history is requested. However, by default the chi-square difference
between the two log likelihoods is listed under the title “Omnibus Tests of
Model Coefficients” and on the “Model” row.

In SAS both -2LL values are depicted under the title “Model Fit
Statistics” and on the “-2 LOG L” row. The null model -2LL is labeled
“Intercept Only,” while the full model -2LL is labeled “Intercept and
Covariates.” The chi-square difference is then provided in the section
entitled “Testing Global Null Hypothesis: Beta = 0” and on the “Likelihood
Ratio” row.

For the sample data the following values were obtained: Null Model -2LL

= 517.724, Full Model -2LL = 212.659, Difference XZ(S) = 305.065, p < .001
(see Table 4). The statistically significant chi-square difference implies
that the five independent variables are at least somewhat predictive of
country of origin. Other related significance tests are available as well
(e.g., the Score statistic, the Akaike Information Criterion (AIC), the
Schwartz criterion).

One may also test the statistical significance of each predictor in any
model of interest. This is accomplished using either the Wald test or a leave-
one-variable-out technique. The latter procedure entails comparing the -2LL
obtained for a model that includes the predictor variable of interest to the -
2LL for a model excluding the variable. The difference in log likelihoods is
distributed as a chi-square variate with 1 degree of freedom. While this
procedure is slightly more accurate than the Wald test, the two will generally
produce similar results. Both SPSS and SAS print Wald statistics for each
variable modeled (see Table 4).

Effect size measures. Effect size indices quantify the strength of
association between variables after removing the effect of sample size. SPSS
print two R?’-type measures of effect size. The Cox and Snell R* (here, .504)

10
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is calculated as R?> = 1 - [Null Model -2LL (-) Full Model -2LL]?®%, where N =
sample size (SPSS, Inc., 1999). Because this R® measure cannot achieve 1.0 by
definition, another option is to calculate the Nagelkerke R® (equation not
presented here). SAS provides both indices as well, but labels them as
generalized R? and max-rescaled R?, respectively. The two statistics are not
available through the “analyst” application, which is a point-and-click
environment, but must be requested via SAS code (SAS Institute, Inc., 1999).
Specifically, one must add /RSQUARE to the end of the MODEL statement in PROC
LOGISTIC.

The most popular R?*-type measure in logistic regression is obtained by
dividing the difference between the null and full model -2LL values by the
null model -2LL value: (Null Model -2LL (-) Full Model -2LL) / Null Model -
2LL. This index is denoted R,?> by Hosmer and Lemeshow (1989). Neither SAS nor
SPSS include this useful index of the proportional reduction in the null model
log likelihood attributable to the predictors, but it can easily be computed

by hand. For the cars data we obtain: R,> = (517.724 - 212.659) / 517.724

.589 A version of R,’ “adjusted” for the number of predictors in the model
can be found as follows: 5L3®2 = ((1 - Null Model -2LL (-) Full Model -2LL) -
2k) / Null Model -2LL, where k = number of predictors in the full model. Here,
it would be RLam = .489.

While these indices do assess effect size, they are not variance-
accounted-for indices because the log likelihood is not really a sum of
squares. However, it is possible to calculate a measure in logistic regression
which is analogous to the R® obtained in linear regression (see, e.g., Menard,
1995). Again, though the calculations are straight-forward, the popular
statistics packages do not include this index. First, calculate the logistic
regression estimates saving the predicted values. Next, use a linear
regression routine to predict the criterion scores from the predicted scores
obtained from the logistic regression (see Appendix B for SPSS syntax, though
the same can be generated in SAS). The obtained R? indexes the proportion of
variance in the dependent variable accounted for “by the logistic equation
(equivalently, one could have correlated the criterion and predicted scores to
obtain the Multiple R). For the cars data, an R?® of .622 was obtained. Note
the larger percentage of variance explained when using logistic regression
(62.2%) as opposed to linear regression (49.5%) and discriminant analysis
(49.5%) .

Other techniques. Other procedures for evaluating meodel fit include
those designed to compare the proportion of cases correctly predicted by the
model (i.e., predicted to be in group 0 or 1) with observed criterion scores.
For example, the ¢ statistic is printed in SAS, along with several other
measures of concordance. Classification tables and histograms of estimated
probabilities can also be useful for determining optimal cutoff points.
Histograms may be inspected to determine whether a rule other than the default
(.5) for assigning cases to groups might be more valid for a given purpose.

As an example of the use of contingency tables, consider a statistic
proposed by Lemeshow and Hosmer (1982). A chi-square distributed statistic is
calculated by summing squared residuals. Each residual is obtained by taking
the difference between the observed and expected criterion score and dividing
by the expected criterion score. This is done for all data points falling in
each of a number of categories that were created by ranking the predicted
probabilities (for details, see Lemeshow and Hosmer). In SPSS this index is
provided by clicking on the “Hosmer & Lemeshow test” option, though SAS does
not yet allow for its calculation. A small chi-square value is ideal (hence
statistical significance is not desired in this case), signifying small
differences between predicted and obtained scores. Qur sample data produced

the following results: (8) = 3.121, p = .927. This non-statistically
significant finding suggests that the criterion variable is adequately
explained by the five-predictor model.

Selecting Optimal Predictors

Researchers generally adopt regression models either to evaluate the

11
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tenability of theories or to make predictions. Infrequently, only a single
model may be estimated and evaluated. More often, researchers test and modify
several competing theories based on the results obtained. At times, one is not
concerned with the selection of predictor variables from a theoretical stance,
but only with how well the equation predicts the criterion (e.g.,
distinguishes between two or more groups). In either case, analysts wish to
pare down their original group of variables to a smaller group of variables
which meet their theoretical or prediction standards.

Several options are available for locating optimal predictors. One may
can inspect the weights and structure coefficients given to each variable in
the regression equation [see below]. Second, one may calculate the relative
percentage of variance explained by various combinations of variables entered
as blocks in a series of analyses. Third, procedures can be applied which
ostensibly select the “best” predictors (i.e., stepwise-type methods). But the
problems associated with stepwise-type variable selection procedures have been
documented elsewhere (see Huberty, 1989; Pedhazur, 1997, p. 211ff; Thompson,
1989). In spite of these warnings, both SAS and SPSS only include stepwise-
type selection procedures (i.e., forward, backward, stepwise).

A better option is to calculate an *“all possible” or “best subsets”
logistic regression procedure. This method presents a summary statistic (e.g.,
R? value) for every possible combination of predictor variables, thus allowing
the researcher to decide on substantive grounds as to the optimal predictor
set. Although Hosmer, Jovanovic and Lemeshow (1989) and Hosmer and Lemshow
(1989) have described how a best-subsets model selection procedure could be
accomplished within logistic regression, no examples using SAS or SPSS
computer syntax have been provided in any source to our knowledge (but see
King, under review, for a full explanation).

Hosmer et al. (1989) recommend interpreting Mallow’s measure of
predictive squared error (i.e., Mallow’s Cp) for identification of a best
subset of variables. C, is expected to be approximately equal to 1 + p , where
p = the number of predictors in the reduced model, with smaller values
preferred.’

Appendixes C and D provide the necessary SAS syntax and results using
the cars data. Note that the procedure is run under a linear regression
routine but with a transformed dependent variable (z) and a case weight (u).
In this case, the C, of smallest magnitude relative to p was obtained for the
three-variable model consisting of engine, horsepower, and weight, C, = 2.498.
The expected C, was 3 (variables) + 1 = 4. Thus, if one wished to select the
best subset of predictor variables according to model parsimony, these would
be chosen. Of course theory should also drive model selection unless
prediction is of sole interest.

Interpreting Model Parameters

Transformed criterion, unaltered predictors. After a model has been
selected, one moves to interpretation of the estimated parameters. From the
coefficients listed in Table 4, the estimated prediction equation for the cars
data (in logits) is

Sorig = 1
1n mlorig )

— = —-.114 + .035mpg - .105eng + .050horse + .004weight +
1 - mlorig = 1)

—.028accel . (6)

As explained earlier, in logistic regression the unstandardized b weight
represents the change in criterion variable logits (i.e., the logarithm of the
odds associated with the criterion variable) for a l-unit increase on the
predictor variable. For example, from Table 4 horsepower was given a b of -
.050. This is interpreted as: a l-unit increase in horsepower produces a .050

increase in origin log-odds (logits). Standardized p weights are also printed
in SAS (but not SPSS) and are useful for comparing strength of prediction
across variables having dissimilar standard deviations.

12
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To understand how to interpret b weights, assume one wishes to predict
the country of origin for a car with the following dimensions: 25 mpg, 100 cu
in. engine displacement, 90 horsepower, 2000 lbs weight, and 20 s to
accelerate from 0 to 60 mph. Using Equation 4, the a and b coefficients from
Table 4, and an Excel spreadsheet, one can calculate the predicted probability

of origin being equal to 0 (European/Japanese-made) : . “=EXP (-
.1136+(.0349*25) +(-.1054*100) +(.0504*90) +(.0035*2000) +(-.0280*20) ) / (L+EXP (-
.1136+(.0349*25) +(-.1054*100) +(.0504*90) +(.0035*2000)+ (-.0280*20)))” = .768.
Given this prediction model, it is likely (ft=".768) that a car with those
particular dimensions would be foreign made; it is less likely (R =1 - .768
= .232) that the car would be made in America. The predicted odds of the car
being foreign is ® / (1 - M) = .768 / (.232) = 3.303. In words, a car with

these dimensions is 3 times more likely to be foregin. Taking the natural
logarithm, one obtains a predicted log-odds (logit) of 1.195.

Now consider a car with exactly the same dimensions but having a 1l-unit
higher level of horsepower (i.e., 91). The predicted probability of the car
being foreign (using the Excel function) is now .776, with a predicted odds of
3.474, and predicted log-odds of 1.2453. The difference between these two
logits is 3.474 - 3.303 = .050. Thus, a l-unit increase in horsepower resulted
in a .050 increase in country of origin logits, which exactly matches the
value of the b coefficient for horsepower listed in Table 4. Thus, holding all
other variables in the question constant, a car having higher horsepower is
more likely to be foreign made.

Transformed criterion, transformed predictors. Interpretation of log-
odds change is difficult. What does it mean to say that increasing horsepower
increases the logits of country of origin by .050? Equation 6 can be
exponentiated to remove the logarithm, converting the dependent variable from
logits back to odds, yet not all the way back to a probability. This model
falls in between the two presented earlier (see Equations 4 and 5). The
equation becomes

Morig = 1) _ _ _ _ -
= g' =e .1639 .021mpg§.102eng9 .047horsee .004we1ght§.018acce1 . (7)
1 -1 (orig = 1)

Interpretation of the weights in this form is now somewhat clearer. The
value to the left of the equals sign is just the odds of country of origin
being equal to 0. A change in 1 unit for each predictor variable multiplies

the odds of the criterion by gb. So now we focus not on how many logits the

criterion will increase additively (as we did earlier in subtracting two odds
to obtain .050), but on how the odds of the criterion will increase
multiplicatively (actually we will divide two odds, and division is the
inverse of multiplication).

An example is needed, but first some terminology. The ratio of two odds
for a 1-unit change in the predictor is termed, not surprisingly, an odds
ratio. SAS labels it so, but SPSS denotes the odds ratio as Exp(B). If the
ratioc is greater than 1, the odds or likelihood of the event happening is
increased; and the converse is true. If the odds ratio is 1.5, the odds of the
event happening has increased 50%. An odds ratio of 1.0 indicates that the
odds of the event has not changed, and the predictor is not related to the
criterion.

Earlier we obtained the predicted odds for horsepower values of 90 (odds
= 3.303) and 91 (odds = 3.474). The ratio of the two odds is 3.474 / 3.303 =
1.052. This is the multiplicative value by which the odds of the criterion
will increase if horsepower is raised by 1 unit (note that this exactly
matches the OR for horsepower in Table 4). It is interpreted: for every l-unit
increase in horsepower and holding all other variables constant, the odds of a
car being foreign-made is increased by about 5%. This interpretation is more
straight-forward than that based on logits, hence the popularity of odds

13
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ratios in logistic regression. SPSS includes confidence intervals for each
predictor’s odds ratio. If a given interval spans 1, the hypothesis of no
relation between predictor and criterion cannot be rejected.

For another example, what if horsepower were decreased from 90 to 757
Using Equation 4 and a spreadsheet, the odds ratio is now .446. Decreasing
horsepower by 15 points makes a car (1 - .446 =) 55.4% less likely to be
foreign-made; equivalently, the odds has decreased 55.4%. This does not imply
that the odds of the car is now more likely to be American-made, only that the
odds, whatever the value, has decreased 55.4% relative to its previous value.
In fact, the odds is still relatively high (1.475) that a car having those
dimension is foreign-made, but the odds has decreased from 3.303 when
horsepower was set at 90. So the odds has been approximately halved by
dropping horsepower 15 points.

Conclusion

A comparison among linear regression, discriminant analysis and logistic
regression suggests the utility of the latter when appropriate. While DA often
yields greater asymptotic relative efficiency (Bull & Donner, 1987; Efron,
1975), logistic regression is more robust due to the restrictive assumptions
of the OLS estimation method (Press & Wilson, 1978). Some have cautioned:

It is unlikely that the two methods will give markedly different

results, or yield substantially different linear functions unless there

is a large proportion of observations whose x-values lie in regions of
the factor space with linear logistic response probabilities near zero

or one. (Press & Wilson, p. 705)

Nevertheless, an additional 12% variance was explained using logistic
regression when applied to the arbitrarily-selected sample dataset. Further,
due to the violation of the multivariate normality assumption inherent when
categorical predictors are present, logistic regression should be the analysis
of choice for most research studies involving a qualitative criterion. With a
model that posits more realistic nonlinear relationships among variables,
educational researchers can achieve enhanced statistical precision in
estimating prediction equations, which should facilitate improved decision
making.

14
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Footnotes

!polytomous criterion variables will not be considered in this paper.

*Multicollinearity has produced this effect. Vehicle weight is highly
correlated with other good predictors: engine displacement (ryx = .934),
horsepower (rxx = .863) and mpg (rxx = -.831). In fact, although horsepower has
a smaller structure coefficient and a smaller bivariate correlation with the
criterion (ryxy = -.489) than does vehicle weight (ryxy = .601), horsepower is
less correlated with engine displacement (Xxx = -.898) and mpg (ryxx = -.776),
thereby explaining more unique criterion variance. Consequently, horsepower is
given ?reater weight in the equation.

On a side note, some prefer to use Fisher’s classification functions to
classify cases in predictive discriminant analysis. In that event, k
classification functions are created, one for each group. Cases are classified
into the group on which they obtain the highest score. We focus here on the
discriminant functions because, “while some cases may be classified
differently in this instance [when using classification functions], the
canonical discriminant function results should be more accurate, because the
effect of idiosyncratic sample variation has been reduced [through selecting a
subset of functions]” (Klecka, 1980, p. 48).

‘Classification plots are also useful in evaluating model fit, but will
not be discussed here.

5In this context, "odds" takes singular verbs: "the odds is 2.0," not
"the odds are 2.0."

Here we are simply illustrating the dynamics of odds and probabilities,
in this case observed probabilities. We are not demonstrating the actual
computations involved in obtaining logistic regression parameter estimates.

"Hosmer et al. (1989) equivalently denote C, as Cj.
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Appendix A

SAS Syntax for Obtaining Logistic Regression Results (for versions prior to
6.06) :

PROC CATMOD;
DIRECT mpg engine horse weight accel;
MODEL origin=mpg engine horse weight accel / ML NOGLS;

SAS Syntax for Obtaining Logistic Regression Results (for version 6.06 or
later) :

PROC LOGISTIC;
MODEL origin = mpg engine horse weight accel;

SPSS Syntax for Obtaining Logistic Regression Results

LOGISTIC REGRESSION VAR=origin
/METHOD=ENTER mpg engine horse weight accel
/CLASSPLOT
/PRINT=GOODFIT CI (95)
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5)

o 18
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Appendix B

SPSS Syntax for Calculating R?

COMMENT Calculate logistic regression estimates saving predicted probabilities

LOGISTIC REGRESSION VAR=origin
/METHOD=ENTER mpg engine horse weight accel
/SAVE PRED
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5)

COMMENT Correlate criterion variable with predicted probabilities
CORRELATIONS

/VARIABLES=origin pre 1

/PRINT=TWOTAIL NOSIG

/MISSING=PAIRWISE

Q | 19
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Appendix C

SAS Syntax for Generating a Best Subsets Logistic Regression Which Includes

Mallow’s G,

* Run logistic regression for full model, saving predicted
probabilities (pred);

PROC LOGISTIC;
MODEL origin = mpg engine horse weight accel
OUTPUT out outputl

p = pred;

* Define two new variables: z and u;

log(pred / (1 - pred)) + ((sex - pred) / (pred * (1 -
pred)));
pred * (1- pred);

z

u

* Run linear regression to obtain Cp;

PROC REG;

MODEL z = mpg engine horse weight accel
/ SELECTION = RSQUARE CP;

WEIGHT u;

20
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Appendix D

Abbreviated Output from SAS Linear Regression "Best Subsets" Procedure

Number in
Model R-Square

C(p)

.5885
.9335
.2097
.7290
.7647

Variables in Model

ENGINE
WEIGHT
MPG
HORSE
ACCEL

ENGINE WEIGHT
ENGINE HORSE
MPG ENGINE
ENGINE ACCEL
MPG WEIGHT
WEIGHT ACCEL
HORSE WEIGHT
MPG ACCEL

MPG HORSE
HORSE ACCEL

ENGINE HORSE WEIGHT
ENGINE WEIGHT ACCEL
MPG ENGINE WEIGHT
ENGINE HORSE ACCEL
MPG ENGINE HORSE
MPG ENGINE ACCEL
MPG HORSE  WEIGHT
HORSE WEIGHT ACCEL
MPG WEIGHT ACCEL
MPG HORSE ACCEL

MPG ENGINE HORSE WEIGHT
ENGINE HORSE WEIGHT ACCEL
MPG ENGINE WEIGHT ACCEL
MPG ENGINE HORSE ACCEL
MPG HORSE WEIGHT ACCEL

MPG ENGINE HORSE WEIGHT ACCEL

21
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Table 1

Excerpt from Cars Data Set

Case # origin mpg engine horse weight accel
1 1 18 307 130 3504 12
2 1 15 350 165 3693 12
3 1 18 318 150 3436 11
4 1 16 304 150 3433 12
5 1 17 302 140 3449 11
6 1 15 429 198 4341 10
7 1 14 454 220 4354 9
8 1 14 440 215 4312 9
9 1 14 455 225 4425 10
10 1 15 390 190 3850 9
11 1 15 383 170 3563 10
12 1 14 340 160 3609 8
13 1 15 400 150 3761 10
14 1 14 455 225 3086 10
15 0 24 113 95 2372 15

391 1 31 119 82 2720 19

Note. origin = country of origin (coded 0 = European/Japanese, 1 = American);
mpg = miles per gallon; engine = engine displacement (cu in); horse =
horsepower; weight = vehicle weight (lbs); accel = time to accelerate from O

to 60 s.

ERIC 22
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Table 2

Summary of Linear Regression Results for Predicting Country of Origin (N =

391)

Variable b SE b B t prob re
(constant) .992 .279 3.554 .000° --
mpg -.013 .004 -.217 -3.252 .001 -.802
engine .005 .001 1.087 9.098 .000% .931
horse -.008 .001 -.600 -5.441 .000% .694
weight .000 .000 -.089 -.734 .463 .853
accel -.005 .010 -.031 -.518 .605 -.371

Note: r, = structure coefficient obtained by correlating the predicted

probabilities (i scores) with predictor variable scores. Mult R? = .495.

aTn some statistical packages, prob < .0005 is represented by .000.

22



O

ERIC

Aruitoxt provided by Eic:

Table 3

Summary of Discriminant Analysis
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Results for Predicting Country of Origin (N =

391)
Stdzd

Variable Function?® Function® j o
(constant) 1.516 -- --
mpg -.056 -.357 -.690
engine .021 1.642 .875
horse -.031 -1.048 .565
weight .000 -.143 .758
accel -.022 -.059 -.273

Note: r, = structure coefficient. Canonical R?

= .495 (Wilks’ ) = .505).

3fFunction coefficients are analogous to regression b weights.

bgtandardized function coefficients are analogous to regression B weights.
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Summary of Logistic Regression
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Results for Predicting Country of Origin (N =

391)
Variable b SE b Wald’'s t prob OR?
(constant) .114 3.082 .001 .971 --
mpg .035 039 .808 .369 1.035
engine .105 .106 42.661 .000P .900
horse . 050 .022 5.222 .022 1.052
weight .004 .001 10.876 .001 1.004
accel .028 .105 .072 .789 .973
Note: Null model -2LL 517.724, full model -2LL 212.659, difference X2(5) =

305.065, p <

%0R = odds ratio; also denoted exp(b).

estimates can be obtained in both SAS

Confidence intervals for the OR

8.0 and SPSS 10.1 (not listed here).

>Tn some statistical packages, prob < .0005 is represented by .000.

25
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Figure Captions
Figure 1. Scatterplot of mpg with origin depicting a nonlinear relationship.
Figure 2. P-P plot of observed versus cumulative probabilities illustrating
the non-normality of errors.
Figure 3. Scatterplot of mpg with residuals illustrating heteroscedasticity.

Figure 4. A typical single-predictor logistic regression curve (ogive

function).
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1129 SHRIVER LAB
COLLEGE PARK, MD 20742-5701
ATTN: ACQUISITIONS

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being
contributed) to: .

ERIC Processing and Reference Facility
4483-A Forbes Boulevard -
Lanham, Maryland 20706

Telephone: 301-552-4200
Toll Free: 800-799-3742
FAX: 301-552-4700
e-mail: ericfac@inet.ed.gov
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